Philadelphia Panel Evidence-Based Clinical Practice Guidelines on Selected Rehabilitation Interventions for Neck Pain

Introduction. A structured and rigorous methodology was developed for the formulation of evidence-based clinical practice guidelines (EBCPGs), then was used to develop EBCPGs for selected rehabilitation interventions for the management of neck pain. Methods. Evidence from randomized controlled trials (RCTs) and observational studies was identified and synthesized using methods defined by the Cochrane Collaboration that minimize bias by using a systematic approach to literature search, study selection, data extraction, and data synthesis. Meta-analysis was conducted where possible. The strength of evidence was graded as level I for RCTs or level II for nonrandomized studies. Developing Recommendations. An expert panel was formed by inviting stakeholder professional organizations to nominate a representative. This panel developed a set of criteria for grading the strength of both the evidence and the recommendation. The panel decided that evidence of clinically important benefit (defined as 15% greater relative to a control based on panel expertise and empiric results) in patient-important outcomes was required for a recommendation. Statistical significance was also required but was insufficient alone. Patient-important outcomes were decided by consensus as being pain, function, patient global assessment, quality of life, and return to work, providing that these outcomes were assessed with a scale for which measurement reliability and validity have been established. Validating the Recommendations. A feedback survey questionnaire was sent to 324 practitioners from 6 professional organizations. The response rate was 51%. Results. For neck pain, therapeutic exercises were the only intervention with clinically important benefit relative to a control (grade A for pain and function, grade B for patient global assessment). There was good agreement with this recommendation from practitioners (93%). For several interventions and indications (eg, thermotherapy, therapeutic ultrasound, massage, electrical stimulation), there was a lack of evidence regarding efficacy. Conclusions. This methodology of developing EBCPGs provides a structured approach to assessing the literature and developing guidelines that incorporates clinicians’ feedback and is widely acceptable to practicing clinicians. Further well-designed RCTs are warranted regarding the use of several interventions for patients with neck pain where evidence was insufficient to make recommendations. [Philadelphia Panel Evidence-Based Clinical Practice Guidelines on Selected Rehabilitation Interventions for Neck Pain. Phys Ther. 2001;81:1701–1717.]

Key Words: Clinical practice guidelines, Evidence-based practice, Meta-analysis, Neck pain, Physical therapy, Practitioner feedback survey, Rehabilitation, Systematic reviews.
INTRODUCTION

Neck pain is the second largest cause of time off work, after low back pain (LBP). Acute neck pain is usually the result of injury or accident, most often road vehicle accidents associated with whiplash. Some prognostic studies have suggested that chronic neck pain is related to repetitive working conditions. However, there is also an association between depression and chronic neck pain and LBP.

The most commonly prescribed intervention for the management of neck pain by general practitioners is rest, followed by analgesics. Neck pain is one of the most common conditions for referral to a physical therapist. Despite the prevalence of neck pain, there is a lack of evidence for commonly used rehabilitation interventions. The most recent guidelines for the management of neck pain are the Quebec Task Force on Spinal Disorders (QTF) and the British Medical Journal (BMJ) guidelines. These guidelines are both in the process of being updated.

The purpose of this article is to describe the Philadelphia Panel evidence-based clinical practice guidelines.

Philadelphia Panel Members:

Clinical Specialty Experts:
John Albright, MD (Orthopaedic Surgeon), American Academy of Orthopaedic Surgeons, USA
Richard Allman, MD (Internist, Rheumatologist), American College of Physicians, USA
Richard Paul Bonfiglio, MD (Physiatrist)
Alicia Conill, MD (Internist), University of Pennsylvania, Philadelphia, Pa, USA
Bruce Dobkin, MD (Neurologist), American Academy of Neurology, USA
Andrew A Guccione, PT, PhD (Physical Therapist), American Physical Therapy Association, USA
Scott M Hasson, PT, EdD (Physical Therapist), American College of Rheumatology, Association of Health Professionals, USA
Randolph Russo, MD (Physiatrist), American Academy of Physical Medicine and Rehabilitation, USA
Paul Shekelle, MD, PhD (Internist), Cochrane Back Group
Jeffrey L Susman, MD (Family Practice), American Academy of Family Physicians, USA

Ottawa Methods Group:
Lucie Brosseau, PhD (Public Health, specialization in epidemiology), Career Scientist, Ministry of Ontario Health (Canada), and Assistant Professor, Physiotherapy Program, School of Rehabilitation Sciences, University of Ottawa, Ottawa, Ontario, Canada
Peter Tugwell, MD, MSc (Epidemiology), Chair, Centre for Global Health, Institute of Population Health, Ottawa, Ontario, Canada
George A Wells, PhD (Epidemiology and Biostatistics), Professor and Chairman, Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Ontario, Canada
Vivian A Robinson, MSc (Kinesiology), Research Associate, Clinical Epidemiology Unit, Ottawa Health Research Institute, Ottawa Hospital, Civic Campus, Ottawa, Ontario, Canada
Ian D Graham, PhD (Medical Sociology), Medical Research Council Scholar, Clinical Epidemiology Unit, Ottawa Health Research Institute, Ottawa Hospital, Civic Campus, Ottawa, Ontario, Canada
Beverley J Shea, MSc (Epidemiology), Research Associate, Department of Medicine, University of Ottawa and Clinical Epidemiology Unit, Ottawa Health Research Institute, Ottawa Hospital, Civic Campus, Ottawa, Ontario, Canada
Jessie McGowan, Director of the Medical Library, Ottawa Hospital, Ottawa, Ontario, Canada
Joan Peterson, Research Associate, Department of Medicine, Clinical Epidemiology Unit, Ottawa Health Research Institute, Ottawa Hospital, Civic Campus, Ottawa, Ontario, Canada
Lucie Poulin, MSc, Michel Tousignant, PhD, Hélène Corriveau, PhD, Michelle Morin, BSc, Lucie Pelland, PhD, Lucie Laferrière, MHA, Lynn Casimirow, Louis E Tremblay, PhD, Program of Physiotherapy, School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada

Address all correspondence and requests for reprints to: Peter Tugwell, MD, MSc, Chair, Centre for Global Health, Institute of Population Health, 1 Stewart St, Rm 312, Ottawa, Ontario, Canada K1N 6N5 (ptugwell@uottawa.ca).

This study was financially supported by an unrestricted educational grant from the Cigna Foundation, Philadelphia, Pa, USA; the Ministry of Human Resources and Development, Government of Canada (Summer Students Program); and the Ontario Ministry of Health and Long-Term Care (Canada). Ian Graham is a Medical Research Council Scholar, Canadian Institutes of Health Research (Canada).

Acknowledgments: Summer students: Sarah Milne, Michael Saginur, Marie-Josée Noël, Mélanie Brophy, Anne Mailhot
(EBCPGs) of rehabilitation interventions for nonspecific neck pain. The aim of the developing the EBCPGs was to improve appropriate use of rehabilitation interventions for neck pain. The target users of these guidelines are physical therapists, physiatrists, orthopedic surgeons, rheumatologists, family physicians, and neurologists.

METHODS
The detailed methods of the EBCPGs development process are summarized in an accompanying paper in this issue (see article titled “Evidence-Based Clinical Practice Guidelines on Selected Rehabilitation Interventions: Overview and Methodology”). Briefly, an a priori protocol was defined that was followed for the conduct of separate systematic reviews for each intervention.

Studies were eligible if they were randomized controlled trials (RCTs), nonrandomized controlled clinical trials (CCTs), or case control or cohort studies that evaluated the intervention of interest in a population of more than 10 patients with nonspecific neck pain. Nonspecific neck pain was defined as pain in the neck area, with or without radiation to the extremities. The outcomes of interest were functional status, pain, ability to work, patient global improvement, patient satisfaction, and quality of life. The interventions included massage, thermal therapy (hot or cold packs), electrical stimulation, electromyographic (EMG) biofeedback, transcutaneous electrical nerve stimulation (TENS), therapeutic ultrasound, therapeutic exercises, and combinations of these rehabilitation interventions. Control groups that received active treatments were included. Concurrent interventions were allowed if they were given in the same way to both the experimental and control groups (eg, home exercises, educational booklets, advice on posture). However, concurrent interventions that were given to one group but not the other group were not accepted (eg, education by means of lectures for the control group was not accepted). No limitations based on methodological quality were imposed. Only English-, French-, and Spanish-language articles were accepted. Abstracts were not included.

A structured literature search was developed based on the sensitive search strategy for RCTs recommended by the Cochrane Collaboration and modifications proposed by Haynes et al. The search strategy was expanded to identify case control, cohort, and nonrandomized studies. The search was conducted in the electronic databases of MEDLINE, EMBASE, Current Contents, CINAHL, and the Cochrane Controlled Trials Register up to July 1, 2000. In addition, the registries of the Cochrane Field of Rehabilitation and Related Therapies and the Cochrane Musculoskeletal Group and the Physiotherapy Evidence Database (PEDro) were searched. The references of all included trials were searched for relevant studies. Content experts were contacted for additional studies.

Two independent reviewers (VAR, JP) appraised the titles and abstracts of the literature search, using a checklist with the a priori defined selection criteria. Relevant studies were retrieved and the full articles were assessed by 2 independent reviewers for inclusion. Data were extracted by 2 independent reviewers from included articles, using predetermined extraction forms regarding the population characteristics, details of the interventions, trial design, allocation concealment, and outcomes. Methodological quality was assessed with a 5-point validated scale that assigns 2 points each for randomization and double-blinding and 1 point for description of withdrawals. Differences in data extraction and quality assessment were resolved by consensus.

STATISTICAL ANALYSIS
Data were analyzed at 3 approximate time points posttherapy: 1 month, 6 months, and 12 months. If outcomes were reported at different intervals, the closest time was used for these time points.

Because prognosis is thought to be dependent on disease duration, the analysis was conducted for 2 categories of neck pain: acute (<4 weeks duration) and chronic (>12 weeks duration). If the population contained patients with mixed acute and chronic disease duration, the study was excluded.

Where possible, data from individual trials were combined using meta-analysis with the Review Manager (RevMan) computer program, Version 4.1 for Windows. Continuous data were analyzed using weighted mean differences, where the difference between the treatment and control groups from each study included in the meta-analysis is weighted by the inverse of the variance and the outcome is reported in the original units (eg, centimeters). Where the same conceptual outcome was measured with different scales (eg, pain, functional status), the data were analyzed with standardized mean differences (SMDs). The SMD is calculated as the mean difference between treatment and control groups divided by standard deviation, and weighted by the inverse of the variance. Dichotomous data were analyzed using relative risk. The confidence that the different trials measured the same treatment effect (homogeneity of effect) was tested using a chi-square statistic. When homogeneity was not significant, fixed-effects models were used. With significant heterogeneity, random-effects models were used.

To calculate clinical improvement (defined as 15% improvement relative to a control), the absolute benefit and the relative difference in the change from baseline were calculated. Absolute benefit was calculated as the improvement in the treatment group less the improvement in the control group, in the original units. Relative difference in the change from baseline was calculated as the absolute benefit divided by the baseline mean (weighted for the treatment and control groups). For dichotomous data, the relative percentage of improvement was calculated as the difference in the percentage of improvement between the treatment and control groups.

The recommendations were graded by their level of evidence (I or II) and by the strength of evidence (A, B, or C). This grading system is shown in Table 1 and is described more fully elsewhere (see article titled “Evidence-Based Clinical Practice Guidelines on Selected Rehabilitation Interventions: Overview and Methodology”). Briefly, grade A recommendations indicate that a clinically important benefit (>15%) and statistical significance were shown in one or more RCTs. Grade B recommendations were assigned for interventions with a clinically important benefit (>15%) that is statistically significant in nonrandomized trials. Because there is less confidence in the results of nonrandomized studies, grade B recommendations required that the study be assigned a quality score of 3 or more on a 5-point scale (2 points for randomization, 2 points for blinding, 1 point for description of withdrawals). Grade C recommendations were assigned to interventions that have been compared with a control and have shown no evidence of effect in controlled trials. A master grid showing each rehabilitation intervention assessed and the strength and level of evidence is shown in Table 2. The report follows the same order as this grid (from left to right, top to bottom) for those interventions for which eligible studies were found.

Clinically important benefit was shown only for therapeutic exercises for chronic neck pain (Tab. 3). There was no evidence of clinically important benefit for 3 other interventions (Tab. 4). Insufficient data were available for 4 interventions (Tab. 5). No trials were identified for ice, heat, or EMG biofeedback. The Philadelphia Panel EBCPGs are compared with other published guidelines in Appendix 1.

RESULTS AND RECOMMENDATIONS

Literature Search
The literature search identified 3,476 articles. Of these, 203 were retrieved for closer screening. Of these, 8 trials met all selection criteria. The distribution of these trials by intervention is shown in Figure 1.

A survey questionnaire was sent to 324 practitioners for feedback on the 9 grade A or B recommendations. Their comments were reviewed by the Philadelphia Panel and were incorporated in this EBCPG document. Of the 324 practitioners surveyed from the American Academy of Family Physicians (AAFP), American Academy of Orthopaedic Surgeons (AAOS), American College of Physicians (ACP), American Physical Therapy Association (APTA), American College of Rheumatology Health Professionals (ARHP), and Physiatric Association of

Table 1. Details of Philadelphia Panel Classification System

<table>
<thead>
<tr>
<th>Grade</th>
<th>Clinical Importance</th>
<th>Statistical Significance</th>
<th>Study Design*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>>15%</td>
<td>P<.05</td>
<td>RCT (single or meta-analysis)</td>
</tr>
<tr>
<td>B</td>
<td>>15%</td>
<td>P<.05</td>
<td>CCT or observational (single or meta-analysis), with a quality score of 3 or more on the 5-point Jadad methodologic quality checklist</td>
</tr>
<tr>
<td>C</td>
<td><15%</td>
<td>Not significant</td>
<td>RCT or CCT or observational (single or meta-analysis)</td>
</tr>
<tr>
<td>C+</td>
<td>>15%</td>
<td>Not significant</td>
<td>Any study design</td>
</tr>
<tr>
<td>C</td>
<td><15%</td>
<td>Unimportant*b</td>
<td>Well-designed RCT with >100 patients</td>
</tr>
</tbody>
</table>

* RCT=randomized controlled trial, CCT=controlled clinical trial.
*b For grade C, statistical significance is unimportant (ie, clinical importance is not met; therefore, statistical significance is irrelevant).

Table 2. Master Grid of Interventions for Neck Pain*

<table>
<thead>
<tr>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise/neuromuscular re-education</td>
<td>nd</td>
</tr>
<tr>
<td>Traction</td>
<td>✓ C, I</td>
</tr>
<tr>
<td>Therapeutic ultrasound</td>
<td>nd</td>
</tr>
<tr>
<td>TENS</td>
<td>✓ C, I</td>
</tr>
<tr>
<td>Massage</td>
<td>nd</td>
</tr>
<tr>
<td>Thermotherapy</td>
<td>nd</td>
</tr>
<tr>
<td>Electrical stimulation</td>
<td>ID</td>
</tr>
<tr>
<td>EMG biofeedback</td>
<td>nd</td>
</tr>
<tr>
<td>Combined rehabilitation interventions</td>
<td>nd</td>
</tr>
</tbody>
</table>

*TENS=transcutaneous electrical nerve stimulation, EMG=electromyographic, nd=no data, ID=insufficient data, A=benefit demonstrated, C=no benefit demonstrated, level I= evidence from randomized controlled trials, level II= evidence from controlled clinical trials.
Spine, Sports, and Occupational Rehabilitation (PASSOR), 9 were inappropriate samples (wrong specialty) and 21 could not be reached due to incorrect addresses. Of the 294 practitioners who were appropriately sampled and received the questionnaire, 149 responded (51% response rate). Of these, 11 (4%) refused to participate and 138 (47%) completed the survey.

Table 3

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Recommendation</th>
<th>Outcomes</th>
<th>Relative Difference</th>
<th>Study Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual, supervised, therapeutic exercises for chronic nonspecific neck pain</td>
<td>Grade B</td>
<td>Patient global assessment</td>
<td>33%-41%</td>
<td>1 CCT (N=47)</td>
</tr>
<tr>
<td>Grade A</td>
<td>Function</td>
<td>49%</td>
<td>1 RCT (N=60)</td>
<td></td>
</tr>
<tr>
<td>Grade A</td>
<td>Pain</td>
<td>36%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No data</td>
<td>Return to work</td>
<td>No data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*CCT=controlled clinical trial, RCT=randomized controlled trial.

Table 4

Grade C Rehabilitation Interventions: No Clinically Important Benefit Demonstrated

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Recommendation</th>
<th>Outcomes</th>
<th>Relative Difference</th>
<th>Study Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>TENS for acute neck pain</td>
<td>Grade C</td>
<td>Pain</td>
<td>No effect</td>
<td>1 RCT (N=20)</td>
</tr>
<tr>
<td>Therapeutic ultrasound for chronic neck pain</td>
<td>Grade C</td>
<td>Pain</td>
<td>No effect</td>
<td>1 RCT (N=26)</td>
</tr>
</tbody>
</table>

*TENS=transcutaneous electrical nerve stimulation, RCT=randomized controlled trial.

Table 5

Rehabilitation Interventions With Insufficient Data

<table>
<thead>
<tr>
<th>Intervention and indication</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical traction for acute neck pain</td>
<td>One CCT (N=135) was excluded due to poor quality (quality=1 out of 5). No other data available.</td>
</tr>
<tr>
<td>Mechanical traction for chronic nonspecific neck pain</td>
<td>One CCT (N=73, quality=0) was excluded due to low quality. No other trials were available.</td>
</tr>
<tr>
<td>TENS for chronic neck pain</td>
<td>Effect on pain measured immediately after 1 treatment session; no ongoing therapy schedule or follow-up. Panel agreed the therapy was not relevant to practice (too short).</td>
</tr>
<tr>
<td>Electrical stimulation for chronic neck pain</td>
<td>Effect on pain measured immediately after 1 treatment session; no ongoing therapy schedule or follow-up. Panel agreed the therapy was not relevant to practice (too short).</td>
</tr>
<tr>
<td>Combined rehabilitation interventions for chronic neck pain</td>
<td>Types of intervention poorly defined and not comparable to each other. Head-to-head trial. No evidence versus placebo available.</td>
</tr>
<tr>
<td>Massage for chronic neck pain</td>
<td></td>
</tr>
</tbody>
</table>

*CCT=controlled clinical trial, TENS=transcutaneous electrical nerve stimulation.

ACUTE NECK PAIN (<4 WEEKS)

Mechanical Traction for Acute Neck Pain (<4 Weeks), Level II (CCT), Grade ID (Insufficient Data)

Summary of Trials: One nonrandomized controlled trial (N=135) of patients following an acute neck injury was excluded due to the poor quality of the trial (quality=1 out of 5). One RCT of continuous traction was excluded because the patient population included a mix of patients with acute and chronic neck pain, which could not be separated.

Efficacy: No reliable data.

Strength of Published Evidence in Comparison With Other Guidelines: The Philadelphia Panel found no evidence for traction for acute neck pain. This is in agreement with the QTF, which found no scientific evidence for traction for acute neck pain.

Recommendation: The Philadelphia Panel recommended that there is insufficient evidence to include or exclude (ID) mechanical traction alone as an intervention for acute nonspecific neck pain.
TENS for Acute Neck Pain (<4 Weeks), Level I (RCT), Grade C for Pain (No Benefit Demonstrated)

Summary of Trials: One RCT (N=20) of TENS (15 minutes, 3 per week at 0.2 milliseconds, 80 Hz) versus neck collar for patients with acute neck pain (<3 days) and no neurological signs was included.14

Efficacy: None demonstrated. There was no difference in patient-assessed pain after 1 week or 3 months between a neck collar and TENS14 (Fig. 2).

Strength of Published Evidence in Comparison With Other Guidelines: The Philadelphia Panel found good scientific evidence (level I, RCT) that TENS did not show evidence of effect on pain. In contrast, the QTF6 found no evidence for TENS in acute neck pain.

Clinical Recommendation in Comparison With Other Guidelines: The Philadelphia Panel recommends that there is poor evidence to include or exclude TENS alone (grade C for pain) as an intervention for acute neck pain.

Interventions for Acute Neck Pain With Insufficient Evidence

No evidence from controlled trials or cohort studies was found for EMG biofeedback, thermotherapy, massage, electrical stimulation, therapeutic exercises, or combined interventions for acute neck pain.

For therapeutic exercises, one RCT of manual therapy combined with exercises was excluded because manual therapy was not given to the control group.15 Another RCT, which compared continuing normal activities with neck collar and time off work, was excluded because of lack of an appropriate control group (ie, the effects of neck collar and sick leave could not be separated).16

For combined interventions, one RCT of combined rehabilitation interventions was excluded because manual therapy was given to the treatment group but not to the control group.17

CHRONIC NECK PAIN (>12 WEEKS)

Therapeutic Exercises for Chronic Neck Pain (>12 Weeks), Level I (RCT), Grade A for Pain and Function, Grade B for Patient Global Assessment (Clinically Important Benefit)

Summary of Trials: Three RCTs (N=223) were included. One CCT (N=73) was included.21 Three comparative RCTs were excluded due to lack of an appropriate control group.22–24 One RCT was excluded because the treatment was a multifactor, behavioral intervention.25

Efficacy: One CCT (N=47) found significant and clinically important patient global assessment with isometric exercises with a risk difference of 41% relative to an untreated control group21 (Tab. 6, Fig. 3). For group fitness classes, 2 RCTs (N=195) showed no difference between group classes and control for pain or sick leave at 1 or 6 months19,20 (Fig. 4). Individual sessions of therapeutic exercises that included proprioceptive re-education (consisting of slow neck movements to follow a moving target) relieved pain and improved functional status, by 36% and 33%, respectively, relative to a waiting list control in one RCT (N=60)18 (Tab. 7, Fig. 5).

Strength of Published Evidence in Comparison With Other Guidelines: The Philadelphia Panel found good scientific evidence (level I), which showed clinically important benefit on pain and function with supervised, isometric or slow neck movement exercises. No data were available on return to work with individualized exercises.
Clinical Recommendation in Comparison With Other Guidelines: The Philadelphia Panel recommends that there is good evidence to include supervised exercise programs alone (including proprioceptive and traditional exercises) for the management of chronic (>12 weeks) neck pain (grade A for pain and function, grade B for patient global assessment).

Practitioner Agreement

- Response rate for this EBCPG: 47%
- Percentage of practitioners giving comments for this EBCPG: 24%
- Agree with recommendation: 93%
- Think a majority of my colleagues would agree: 86%
- Will (or already) follow this recommendation: 96%

Practitioner Comments

1. Negative trials are not described in Table 3.19,20
2. Not all options for chronic neck pain have been evaluated by this panel.
3. Postural exercises should be evaluated/described.
4. I believe stretching is more important.

Panel’s Response: The 2 negative trials used group aerobic fitness programs and are shown in Figure 4. The Philadelphia Panel evaluated selected interventions, as described in the “Methods” section. This may not have been clear in the practitioner feedback survey. No trials of postural exercises were found. Stretching was a component of the effective programs and has now been included in the guideline statement.

Mechanical Traction for Chronic Neck Pain (>12 Weeks), Level II (CCT), Insufficient Data (ID)

Summary of Trials: One CCT (N=73) of patients with cervical pain radiating to the extremities was excluded21 due to low quality (quality=0 out of 5). One RCT was excluded because the population included a mix of both patients with acute and chronic neck pain.26 One RCT of patients with cervical radiculopathy was excluded because no acceptable outcomes were measured (only EMG activity).27 One RCT of continuous traction was excluded because the patient population included a mix of patients with acute and chronic neck pain, which could not be separated.13

Efficacy: Insufficient data. The excluded CCT demonstrated an improvement relative to the control (untreated group) in patient-assessed improvement with intermittent mechanical traction. However, due to the low quality of the trial, the validity of this effect is uncertain.

Strength of Published Evidence in Comparison With Other Guidelines: The Philadelphia Panel found insufficient data for mechanical traction similar to the QTF,6 which found no scientific evidence.

Clinical Recommendation in Comparison With Other Guidelines: There are insufficient data to make a recommendation regarding mechanical traction alone in chronic neck pain.

Therapeutic Ultrasound for Chronic Neck Pain (>12 Weeks), Level II, Grade C for Pain (No Evidence of Benefit)

Summary of Trials: One RCT (N=26) of patients with myofascial trigger point neck pain was included.28

Efficacy: None demonstrated. There was no difference in pain between therapeutic ultrasound and placebo therapeutic ultrasound. Other outcomes were not assessed (Fig. 6).

Strength of Published Evidence in Comparison with Other Guidelines: The Philadelphia Panel found good scientific evidence (level I) that showed no benefit of therapeutic ultrasound on pain relief for chronic neck pain. The QTF6 found no scientific evidence.
Clinical Recommendation in Comparison With Other Guidelines: The Philadelphia Panel recommends that there is poor evidence to include or exclude therapeutic ultrasound alone (grade C for pain) as an intervention for chronic neck pain.

Interventions for Chronic Neck Pain With Insufficient Data

Interventions that could not be assessed due to lack of controlled studies were EMG biofeedback, massage, thermotherapy, electrical stimulation, TENS, and combined rehabilitation interventions.

For combined interventions, one RCT was excluded because manual therapy was included in the “physiotherapy” group, but not the control group.20

DISCUSSION

Evidence-based practice is rapidly growing in the rehabilitation domain.30 The Philadelphia Panel concluded that therapeutic strengthening and proprioceptive exercises are the only rehabilitation interventions examined for cervical pain that have been shown in one or more controlled trials to provide a clinically important benefit. As with all such reviews, there are a number of limitations.

As for LBP, the effectiveness of conservative treatment of cervical syndrome is a complex issue.5,31–34 Rehabilitation specialists often use concomitant treatment interventions within the same treatment session for a particular patient with a cervical syndrome. Certain rehabilitation interventions such as cryotherapy, ultrasound application, and massage are used for pain relief in the acute stage or as a treatment preparation before the main intervention.35 These treatment approaches are chosen based on empirical experience.35,36 The use of single and specific interventions does not reflect the complexity of the global approach adopted by rehabilitation specialists in clinical settings. The practice of rehabilitation requires a better theoretical basis supported by well-designed controlled research.37

The measurement of treatment effects is complex.40,41 Standardized measurement of outcomes is needed to facilitate scientific advances in clinical care for cervical syndromes. Little is known about valid and sensitive outcome measures in the spine.42 The Philadelphia Panel agreed that the primary outcomes of clinical importance are: pain, functional status, patient global assessment, quality of life, return to work, and patient satisfaction.

The effectiveness of physical rehabilitation interventions for cervical syndrome is affected by psychosocial, physical, and occupational factors.1,43–54 Management recommendations suggest that these factors should be considered in the clinical evaluation of patients with cervical pain.48 These factors could not be addressed in this review.

Several methodological biases may be present in the clinical trials of cervical pain. The lack of precise diagnoses contributes to a misclassification bias.4,46,55–60 For example, the terminology used to describe cervical syndrome was vague and included terms such as “tension

Table 6.
Patient Global Assessment at 1 Month Post-exercise Therapy for Chronic Neck Pain

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment Group</th>
<th>Outcome</th>
<th>No. Improved</th>
<th>No. of Patients</th>
<th>Risk (% of Occurrence)</th>
<th>Risk Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldie and Landquist,21 1970</td>
<td>E: isometric</td>
<td>Patient global improvement</td>
<td>17</td>
<td>24</td>
<td>71%</td>
<td>41%</td>
</tr>
<tr>
<td></td>
<td>exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C: untreated</td>
<td></td>
<td>7</td>
<td>23</td>
<td>30%</td>
<td></td>
</tr>
</tbody>
</table>

*E=exercise group, C=control group.

Figure 3.
Resisted exercises versus untreated: patient global assessment at 1 month. CI=confidence interval.

Table 6. Patient Global Assessment at 1 Month Post-exercise Therapy for Chronic Neck Pain*
neck,” “frequent neck symptoms,” and “cervical pain.” A wide variety of clinical characteristics such as age, prevalent versus incident cases, stages of the disease, level of pain, and presence or absence of neurological deficits may have resulted in selection bias. Differences in disease duration were minimized in these guidelines by excluding studies with a mix of patients with acute and chronic conditions or mixed diagnoses. Characteristics of the device parameters and of the therapeutic application could also affect the treatment effect observed. The tendency for trials with nonsignificant results to not be published may result in an overestimate of the treatment effect due to publication bias. We could not assess the presence of publication bias due to the small number of trials. A language bias was introduced because the Philadelphia Panel reviewed only studies published in English, French, or Spanish.

The quality of studies on cervical syndrome rarely reached 2 out of 5 or greater on the Jadad scale. Randomization (3/6 studies) was rarely fully adequate (ie, performed using computerized random number lists). Insufficient information about the treatment assignment procedure was noted in several RCTs. Inappropriate blinding (5/6 studies) could lead to an overestimate of the treatment effect. Complete blinding is difficult to achieve because of visual and other sensory differences between treatment and placebo as well as unintended communication between patient and evaluator. Few investigators (1/6 studies) reported adequate information regarding withdrawals and loss to follow-up or indicated whether they were considered in the data analysis. These weaknesses contribute to the lower quality assessment scores in many of the systematic reviews conducted on rehabilitation interventions for cervical syndrome.

Ottenbacher lists several difficulties for rehabilitation specialists: (1) discriminate between clinical and statistical significance, (2) low statistical power in detecting minimal clinical important differences, and (3) lack of replication of rehabilitation studies to strengthen evidence-based practice. Some studies (3/6 studies) did not use adequate sample sizes to detect important differences with confidence (Appendix 2). These issues contribute to nonconclusive results for several interventions. The Philadelphia Panel agreed that clinical importance be defined as an improvement of 15% or more relative to a control (see article titled “Evidence-Based Clinical Practice Guidelines on Selected Rehabilitation Interventions: Overview and Methodology”). Grade A or B recommendations were required to demonstrate both clinical importance and statistical significance.

The Philadelphia Panel EBCPGs for the management of cervical pain are mainly in agreement with previous and recent EBCPGs for neck pain described in Appendix 1. The Philadelphia Panel EBCPGs for cervical pain have the advantage that they were developed based on a systematic grading of the evidence determined by an expert, transdisciplinary panel and the evidence was derived from systematic reviews and meta-analyses using the Cochrane Collaboration methodology. The finalized guidelines were circulated for feedback from practitioners to verify their applicability and ease of use for practicing clinicians. This rigorous methodological procedure provides considerable credibility for rehabilitation specialists who intend to use these EBCPGs for cervical management in their daily practice.

Therapeutic Exercises

Our meta-analysis showed that proprioceptive and traditional therapeutic exercises are effective for pain relief in chronic cervical pain. No included studies considered exercises for acute or subacute conditions. In contrast to our results, 3 recent reviews concluded that there was insufficient evidence regarding therapeutic exercises for neck pain. Functional exercises including proprioceptive phasic exercises have been described as effective in another review. Types of exercise, intensity, and progression need to be clarified according to patient
specific classification of physical dysfunction, needs, treatment goals, and outcomes.4,66,67

Mechanical Traction

Although 3 RCTs have been conducted in acute12 and chronic21 cervical pain, the results did not meet the criteria for a consistent clinically important benefit for intermittent traction. Static traction was not used by investigators in the included studies.

These results are mainly in concordance with previous systematic reviews for acute and chronic cervical pain management,5,32,42 even though these authors did not clearly distinguish between manual and mechanical traction. Our systematic review included patients with cervical pain with neurological signs in 1 of the 2 trials.21 Pennie et al12 did not report whether their subjects with cervical soft tissue injuries exhibited neurological signs. According to the information provided by these trials, none of the included subjects had disk involvement. Furthermore, exclusion criteria, such as acute strain, sprains, presence of inflammation, or joint instability of the spine, were not consistently reported in the primary trials. The proposed clinical indication for static or sustained traction is the presence of a nuclear disk protrusion.68,69 Thus, the use of intermittent traction by Goldie et al21 is questionable.70 This point shows the importance of identifying homogenous subgroups of patients with neck pain based on precise differential physical dysfunction diagnostic classes, such as nerve root adhesion, hypomobility dysfunction, and sacroiliac hypermobility.71 The effectiveness of intermittent mechanical traction was not demonstrated by the existing studies, mainly due to the inclusion of patients with neurological signs, which required more likely a mechanical traction in static mode. Other confounding variables such as neck position, traction force, duration of traction, angle of pull, and position of the patient need to be further investigated.72
The Philadelphia Panel was unable to make a clinical recommendation regarding these specific interventions. This is in agreement with BMJ7 and QTF6 guidelines, which did not evaluate these interventions.

Overall

The main difficulty in determining the effectiveness of rehabilitation interventions is the lack of well-designed prospective RCTs. An enormous research effort should be done in conducting RCTs for almost each rehabilitation interventions for acute or chronic cervical syndrome. This situation is critical compared with the neck pain research area. Future research in physical therapy should also adopt rigorous methods such as the use of an appropriate placebo (and double-blind procedure), adequate randomization, homogeneous sample of patients based on rigorous selection and diagnosis criteria, and adequate sample size to detect clinically important differences with confidence.

CONCLUSION

There is scientific evidence to support and recommend the use of proprioceptive and therapeutic exercises for chronic neck pain. There is a lack of evidence at present regarding whether to include or exclude the use of thermotherapy, therapeutic massage, EMG biofeedback, mechanical traction, therapeutic ultrasound, TENS, electrical stimulation, and combined rehabilitation interventions in the daily practice of physical rehabilitation of patients with acute and chronic neck pain.

References

Ottenbacher KJ. Why rehabilitation research does not work (as well as we think it should). *Arch Phys Med Rehabil*. 1995;76:123–129.

Appendix 1.
Strength of Published Evidence and Clinical Recommendations of Previous Evidence-Based Clinical Practice Guidelines (EBCPGs) for Acute and Chronic Neck Pain

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous EBCPGs for Acute Neck Pain (<4 Weeks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapeutic exercises</td>
<td>Quality of published evidence</td>
<td>N/A</td>
<td>Common practice, but no scientific evidence</td>
</tr>
<tr>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>Listed as option to increase strength, ROM, and endurance</td>
<td>Good evidence that early mobilization physical therapy and return to normal activity were more effective than rest or immobilization for acute whiplash</td>
</tr>
<tr>
<td>Mechanical traction</td>
<td>Quality of published evidence</td>
<td>Fair scientific evidence (level I) for mechanical traction</td>
<td>Not in common practice, but no scientific evidence</td>
</tr>
<tr>
<td>Clinical recommendations</td>
<td>Insufficient evidence to include or exclude (grade ID) mechanical traction alone as an intervention for acute nonspecific neck pain</td>
<td>Listed as option to increase ROM</td>
<td>Insufficient evidence on the effects of traction in people with uncomplicated neck pain without neurological deficit</td>
</tr>
<tr>
<td>Therapeutic ultrasound</td>
<td>Quality of published evidence</td>
<td>N/A</td>
<td>Common practice, but no scientific evidence</td>
</tr>
<tr>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>Ultrasound is grouped with thermotherapy and listed as an option to diminish muscle spasm and relieve symptomatic pain</td>
<td>N/C</td>
</tr>
<tr>
<td>TENS</td>
<td>Quality of published evidence</td>
<td>Good scientific evidence (level I) for TENS</td>
<td>Not in common practice, but no scientific evidence</td>
</tr>
<tr>
<td>Clinical recommendations</td>
<td>Poor evidence to include or exclude (grade C for pain) TENS alone as an intervention for acute LBP</td>
<td>Electroanalgesia is listed as an option for symptomatic pain relief</td>
<td>N/C</td>
</tr>
<tr>
<td>EMG biofeedback</td>
<td>Quality of published evidence</td>
<td>N/A</td>
<td>Common practice, but no scientific evidence</td>
</tr>
<tr>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>EMG biofeedback is listed as an option to diminish muscle spasm</td>
<td>Insufficient evidence on the effects of biofeedback in uncomplicated neck pain without severe neurological deficit</td>
</tr>
<tr>
<td>Therapeutic massage</td>
<td>Quality of published evidence</td>
<td>N/A</td>
<td>Common practice, but no scientific evidence</td>
</tr>
<tr>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>Therapeutic massage is listed as an option to diminish muscle spasm</td>
<td>N/C</td>
</tr>
<tr>
<td>Thermotherapy</td>
<td>Quality of published evidence</td>
<td>N/A</td>
<td>Common practice, but no scientific evidence</td>
</tr>
<tr>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>Thermotherapy is listed as an option to diminish muscle spasm and inflammation and relieve symptomatic pain</td>
<td>Insufficient evidence on the effects of heat or cold in uncomplicated neck pain without severe neurological deficit</td>
</tr>
</tbody>
</table>
Previous EBCPGs for Acute Neck Pain (<4 Weeks) (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical stimulation</td>
<td>Quality of published evidence</td>
<td>N/A</td>
<td>N/C</td>
</tr>
<tr>
<td></td>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>N/C</td>
</tr>
<tr>
<td>Combined rehabilitation interventions</td>
<td>Quality of published evidence</td>
<td>N/A</td>
<td>N/C</td>
</tr>
<tr>
<td></td>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>N/R</td>
</tr>
</tbody>
</table>

Electrical stimulation
- Quality of published evidence: N/A
- Clinical recommendations: No data found
- **Rehabilitation Intervention**
- Quality of published evidence: N/A
- Clinical recommendations: No data found

Combined rehabilitation interventions
- Quality of published evidence: N/A
- Clinical recommendations: No data found

Previous EBCPGs for Chronic Neck Pain (>12 Weeks)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapeutic exercises</td>
<td>Quality of published evidence</td>
<td>Good scientific evidence (level I) for therapeutic exercises</td>
<td>Common practice, but no scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Clinical recommendations</td>
<td>Good evidence (grade A for pain and function, grade B for patient global assessment) to include supervised therapeutic exercises</td>
<td>Listed as option to increase strength, ROM, and endurance</td>
</tr>
<tr>
<td>Mechanical traction</td>
<td>Quality of published evidence</td>
<td>Insufficient evidence</td>
<td>Common practice, but no scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Clinical recommendations</td>
<td>Insufficient data to make a recommendation</td>
<td>Listed as option to increase ROM</td>
</tr>
<tr>
<td>Therapeutic ultrasound</td>
<td>Quality of published evidence</td>
<td>Fair scientific evidence (level II) for therapeutic ultrasound</td>
<td>Common practice, but no scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Clinical recommendations</td>
<td>Poor evidence to include or exclude (grade C for pain) therapeutic ultrasound alone as an intervention for chronic LBP</td>
<td>Therapeutic ultrasound is grouped with thermotherapy and listed as an option to diminish muscle spasm and relieve symptomatic pain</td>
</tr>
<tr>
<td>TENS</td>
<td>Quality of published evidence</td>
<td>N/A</td>
<td>Usefulness demonstrated by nonrandomized controlled trial</td>
</tr>
<tr>
<td></td>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>Electroanalgesia is listed as an option for symptomatic pain relief</td>
</tr>
</tbody>
</table>

Therapeutic exercises
- Quality of published evidence: Good scientific evidence (level I) for therapeutic exercises

Therapeutic ultrasound
- Quality of published evidence: Fair scientific evidence (level II) for therapeutic ultrasound

TENS
- Quality of published evidence: N/A

Therapeutic ultrasound
- Quality of published evidence: Fair scientific evidence (level II) for therapeutic ultrasound
- Clinical recommendations: Poor evidence to include or exclude (grade C for pain) therapeutic ultrasound alone as an intervention for chronic LBP

TENS
- Quality of published evidence: N/A
- Clinical recommendations: No data found

Therapeutic ultrasound
- Quality of published evidence: Fair scientific evidence (level II) for therapeutic ultrasound
- Clinical recommendations: Poor evidence to include or exclude (grade C for pain) therapeutic ultrasound alone as an intervention for chronic LBP

TENS
- Quality of published evidence: N/A
- Clinical recommendations: No data found

Therapeutic ultrasound
- Quality of published evidence: Fair scientific evidence (level II) for therapeutic ultrasound

TENS
- Quality of published evidence: N/A
- Clinical recommendations: No data found

Therapeutic ultrasound
- Quality of published evidence: Fair scientific evidence (level II) for therapeutic ultrasound
- Clinical recommendations: Poor evidence to include or exclude (grade C for pain) therapeutic ultrasound alone as an intervention for chronic LBP

TENS
- Quality of published evidence: N/A
- Clinical recommendations: No data found
Appendix 1.
Continued

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous EBCPGs for Chronic Neck Pain (>12 Weeks) (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMG biofeedback</td>
<td>Strength of published evidence</td>
<td>N/A</td>
<td>Common practice, but no scientific evidence</td>
<td>N/R</td>
</tr>
<tr>
<td></td>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>EMG biofeedback is listed as an option to diminish muscle spasm</td>
<td>Insufficient evidence on the effects of biofeedback in people with uncomplicated neck pain without neurological deficit</td>
</tr>
<tr>
<td>Therapeutic massage</td>
<td>Strength of published evidence</td>
<td>N/A</td>
<td>Common practice, but no scientific evidence</td>
<td>N/C</td>
</tr>
<tr>
<td></td>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>Therapeutic massage is listed as an option to diminish muscle spasm, but not for reduction of pain or not to increase function status</td>
<td>N/C</td>
</tr>
<tr>
<td>Thermotherapy</td>
<td>Strength of published evidence</td>
<td>N/A</td>
<td>Common practice, but no scientific evidence</td>
<td>N/R</td>
</tr>
<tr>
<td></td>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>Thermotherapy is listed as an option to diminish muscle spasm and inflammation and to relieve symptomatic pain</td>
<td>Insufficient evidence of the effects of heat or ice in people with uncomplicated neck pain without neurological deficit</td>
</tr>
<tr>
<td>Electrical stimulation</td>
<td>Strength of published evidence</td>
<td>N/A</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td></td>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>Combined rehabilitation interventions</td>
<td>Strength of published evidence</td>
<td>N/A</td>
<td>N/C</td>
<td>N/R</td>
</tr>
<tr>
<td></td>
<td>Clinical recommendations</td>
<td>No data found</td>
<td>Recommended that physical therapists use physical modalities and interventions at their own discretion with the objectives of relieving spasm, reducing inflammation, reducing pain, and increasing strength, ROM, endurance, and physical and functional status</td>
<td>Insufficient evidence of the effects of physical treatments in people with uncomplicated neck pain without neurological deficit</td>
</tr>
</tbody>
</table>

N/A = not applicable, N/R = not reported, N/C = not considered, ROM = range of motion.
Appendix 2.
Characteristics of Included Trials

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Sample Size</th>
<th>Population</th>
<th>Symptom Duration</th>
<th>Age (y) (Mean, SD, Controls)</th>
<th>Treatment</th>
<th>Comparison Group</th>
<th>Concurrent Therapy</th>
<th>Sessions/Week</th>
<th>Treatment Duration</th>
<th>Follow-up</th>
<th>Quality *10,11 (R, B, W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldie and Landquist, 1970</td>
<td>73</td>
<td>Cervical pain radiating down upper extremities</td>
<td>Chronic (mean= 5 y)</td>
<td>Not reported</td>
<td>1. Isometric exercise 2. Intermittent traction (25–40 lb)</td>
<td>Untreated</td>
<td>Advice, paracetamol</td>
<td>3</td>
<td>3 wk</td>
<td>6 mo</td>
<td>0, 0, 0</td>
</tr>
<tr>
<td>Klemett et al, 1997</td>
<td>170</td>
<td>Tension neck</td>
<td>Chronic</td>
<td>42 y</td>
<td>Physical treatment + exercise</td>
<td>Untreated</td>
<td>None</td>
<td>2</td>
<td>4 wk</td>
<td>6 mo</td>
<td>0, 0, 0</td>
</tr>
<tr>
<td>Lee et al, 1997</td>
<td>26</td>
<td>Myofascial trigger point</td>
<td>Chronic</td>
<td>43.7 (14.3)</td>
<td>1. Therapeutic ultrasound 0.5 W/cm² 2. Electrotherapy 3. Therapeutic ultrasound + electrotherapy</td>
<td>Placebo ultrasound</td>
<td>None</td>
<td>1</td>
<td>1 session</td>
<td>None</td>
<td>1, 2, 0</td>
</tr>
<tr>
<td>Nordemar and Thomer, 1981</td>
<td>20</td>
<td>No neurological symptoms in extremities</td>
<td>Acute <3 d</td>
<td>34 (25–43)</td>
<td>TENS</td>
<td>Neck collar (control)</td>
<td>Analgesics</td>
<td>3</td>
<td>2 wk</td>
<td>3 mo</td>
<td>1, 0, 1</td>
</tr>
<tr>
<td>Pennie and Agambar, 1990</td>
<td>135</td>
<td>Neck soft-tissue injuries from accident</td>
<td>Acute</td>
<td>Not reported</td>
<td>Traction (intermittent)</td>
<td>Neck collar</td>
<td>Advice + home active exercises</td>
<td>2</td>
<td>8 wk</td>
<td>None</td>
<td>0, 1, 0</td>
</tr>
<tr>
<td>Revel et al, 1994</td>
<td>30</td>
<td>>3 mo, rheumatology outpatients</td>
<td>Chronic</td>
<td>47 (25–74)</td>
<td>Proprioceptive exercises based on eye-head coupling</td>
<td>Waiting list control</td>
<td>None</td>
<td>2</td>
<td>8 wk</td>
<td>10 wk</td>
<td>1, 0, 0</td>
</tr>
<tr>
<td>Takala et al, 1994</td>
<td>23</td>
<td>“Frequent neck symptoms”</td>
<td>Chronic</td>
<td>43 (38–49)</td>
<td>Exercise</td>
<td>Untreated</td>
<td>None, but crossover trial</td>
<td>N/A</td>
<td>2 mo</td>
<td>5 mo</td>
<td>1, 0, 0</td>
</tr>
</tbody>
</table>

* R=randomization, B=blinding, W=withdrawal, N/A=not available.